Evolutionary Discovery of Learning Rules for Feedforward Neural Networks with Step Activation Function

نویسندگان

  • Amr Radi
  • Riccardo Poli
چکیده

Neural networks with step activation function can be very efficient ways of performing non linear mappings. However, no standard learning algorithm exists for training this kind of neural networks. In this work we use Genetic Programming (GP) to discover supervised learning algorithms which can train neural networks with step activation function. Thanks to GP, a new learning algorithm has been discovered which has been shown to provide good performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

Numerical solution of fuzzy linear Fredholm integro-differential equation by \fuzzy neural network

In this paper, a novel hybrid method based on learning algorithmof fuzzy neural network and Newton-Cotesmethods with positive coefficient for the solution of linear Fredholm integro-differential equation of the second kindwith fuzzy initial value is presented. Here neural network isconsidered as a part of large field called neural computing orsoft computing. We propose alearning algorithm from ...

متن کامل

Numerical solution of fuzzy differential equations under generalized differentiability by fuzzy neural network

In this paper, we interpret a fuzzy differential equation by using the strongly generalized differentiability concept. Utilizing the Generalized characterization Theorem. Then a novel hybrid method based on learning algorithm of fuzzy neural network for the solution of differential equation with fuzzy initial value is presented. Here neural network is considered as a part of large eld called ne...

متن کامل

Spike Event Based Learning in Neural Networks

A scheme is derived for learning connectivity in spiking neural networks. The scheme learns instantaneous firing rates that are conditional on the activity in other parts of the network. The scheme is independent of the choice of neuron dynamics or activation function, and network architecture. It involves two simple, online, local learning rules that are applied only in response to occurrences...

متن کامل

Unsupervised learning of an efficient short-term memory network

Learning in recurrent neural networks has been a topic fraught with difficulties and problems. We here report substantial progress in the unsupervised learning of recurrent networks that can keep track of an input signal. Specifically, we show how these networks can learn to efficiently represent their present and past inputs, based on local learning rules only. Our results are based on several...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999